Practice Problems

15.

16.

What is the observed frequency when the source having frequency 3.0 kHz is moving towards the observer at a speed of

1.0 X 10 m/s and the speed of sound is 331 m/s?

a. 3.0kHz
b. 3.5kHz
c. 2.3kHz
d. 43kHz

A train is moving away from you at a speed of 50.0 m/s. If you are standing still and hear the whistle at a frequency of
305 Hz, what is the actual frequency of the produced whistle? (Assume speed of sound to be 331 m/s.)
a. 259Hz

b. 205Hz
c. 405Hz
d. 351Hz

Check Your Understanding

17.

18.

19.

20.

What is the Doppler effect?

a. The Doppler effect is a change in the observed speed of a sound due to the relative motion between the source and the
observer.

b. The Doppler effect is a change in the observed frequency of a sound due to the relative motion between the source and
the observer.

c. The Doppler effect is a change in the observed intensity of a sound due to the relative motion between the source and
the observer.

d. The Doppler effect is a change in the observed timbre of a sound, due to the relative motion between the source and the

observer.

Give an example of the Doppler effect caused by motion of the source.

a. The sound of a vehicle horn shifts from low-pitch to high-pitch as we move towards it.

b. The sound of a vehicle horn shifts from low-pitch to high-pitch as we move away from it.

c. 'The sound of a vehicle horn shifts from low-pitch to high-pitch as it passes by.

d. The sound of a vehicle horn shifts from high-pitch to low-pitch as it passes by.

What is a sonic boom?
a. Itisadestructive interference of sound created by an object moving faster than sound.
b. Itisa constructive interference of sound created by an object moving faster than sound.
c. Itisadestructive interference of sound created by an object moving slower than sound.
d. Itisa constructive interference of sound created by an object moving slower than sound.

What is the relation between speed of source and value of observed frequency when the source is moving towards the
observer?

a. They are independent of each other.

b. The greater the speed, the greater the value of observed frequency.

c. The greater the speed, the smaller the value of observed frequency.

d. The speed of the sound is directly proportional to the square of the frequency observed.

14.4 Sound Interference and Resonance

Section Learning Objectives
By the end of this section, you will be able to do the following:

Describe resonance and beats

Define fundamental frequency and harmonic series

Contrast an open-pipe and closed-pipe resonator

Solve problems involving harmonic series and beat frequency



Section Key Terms

beat beat frequency damping fundamental harmonics

natural frequency overtones resonance resonate

Resonance and Beats

Sitin front of a piano sometime and sing a loud brief note at it while pushing down on the sustain pedal. It will sing the same
note back at you—the strings that have the same frequencies as your voice, are resonating in response to the forces from the
sound waves that you sent to them. This is a good example of the fact that objects—in this case, piano strings—can be forced to
oscillate but oscillate best at their natural frequency.

A driving force (such as your voice in the example) puts energy into a system at a certain frequency, which is not necessarily the
same as the natural frequency of the system. Over time the energy dissipates, and the amplitude gradually reduces to zero- this
is called damping. The natural frequency is the frequency at which a system would oscillate if there were no driving and no
damping force. The phenomenon of driving a system with a frequency equal to its natural frequency is called resonance, and a
system being driven at its natural frequency is said to resonate.

Most of us have played with toys where an object bobs up and down on an elastic band, something like the paddle ball suspended
from a finger in Figure 14.18. At first you hold your finger steady, and the ball bounces up and down with a small amount of
damping. If you move your finger up and down slowly, the ball will follow along without bouncing much on its own. As you
increase the frequency at which you move your finger up and down, the ball will respond by oscillating with increasing
amplitude. When you drive the ball at its natural frequency, the ball’s oscillations increase in amplitude with each oscillation for
as long as you drive it. As the driving frequency gets progressively higher than the resonant or natural frequency, the amplitude
of the oscillations becomes smaller, until the oscillations nearly disappear and your finger simply moves up and down with little
effect on the ball.

Figure 14.18 The paddle ball on its rubber band moves in response to the finger supporting it. If the finger moves with the natural
frequency of the ball on the rubber band, then a resonance is achieved, and the amplitude of the ball’s oscillations increases dramatically.

At higher and lower driving frequencies, energy is transferred to the ball less efficiently, and it responds with lower-amplitude oscillations.

Another example is that when you tune a radio, you adjust its resonant frequency so that it oscillates only at the desired station’s
broadcast (driving) frequency. Also, a child on a swing is driven (pushed) by a parent at the swing’s natural frequency to reach
the maximum amplitude (height). In all of these cases, the efficiency of energy transfer from the driving force into the oscillator
is best at resonance.



Figure 14.19 Some types of headphones use the phenomena of constructive and destructive interference to cancel out outside noises.

All sound resonances are due to constructive and destructive interference. Only the resonant frequencies interfere
constructively to form standing waves, while others interfere destructively and are absent. From the toot made by blowing over a
bottle to the recognizability of a great singer’s voice, resonance and standing waves play a vital role in sound.

Interference happens to all types of waves, including sound waves. In fact, one way to support that something is a wave is to
observe interference effects. Figure 14.19 shows a set of headphones that employs a clever use of sound interference to cancel
noise. To get destructive interference, a fast electronic analysis is performed, and a second sound is introduced with its maxima
and minima exactly reversed from the incoming noise.

In addition to resonance, superposition of waves can also create beats. Beats are produced by the superposition of two waves
with slightly different frequencies but the same amplitude. The waves alternate in time between constructive interference and
destructive interference, giving the resultant wave an amplitude that varies over time. (See the resultant wave in Figure 14.20).

This wave fluctuates in amplitude, or beats, with a frequency called the beat frequency. The equation for beat frequency is

B =1 =Ll 14.13

where f; and £, are the frequencies of the two original waves. If the two frequencies of sound waves are similar, then what we
hear is an average frequency that gets louder and softer at the beat frequency.

TIPS FOR SUCCESS

Don't confuse the beat frequency with the regular frequency of a wave resulting from superposition. While the beat
frequency is given by the formula above, and describes the frequency of the beats, the actual frequency of the wave resulting
from superposition is the average of the frequencies of the two original waves.

Figure 14.20 Beats are produced by the superposition of two waves of slightly different frequencies but identical amplitudes. The waves

alternate in time between constructive interference and destructive interference, giving the resulting wave a time-varying amplitude.

Virtual Physics

Wave Interference
Click to view content (https://www.openstax.org/l/28interference)



https://www.openstax.org/l/28interference

For this activity, switch to the Sound tab. Turn on the Sound option, and experiment with changing the frequency and

amplitude, and adding in a second speaker and a barrier.

GRASP CHECK

According to the graph, what happens to the amplitude of pressure over time. What is this phenomenon called, and
what causes it ?
a. The amplitude decreases over time. This phenomenon is called damping. It is caused by the dissipation of energy.
b. The amplitude increases over time. This phenomenon is called feedback. It is caused by the gathering of energy.
c. The amplitude oscillates over time. This phenomenon is called echoing. It is caused by fluctuations in energy.

Fundamental Frequency and Harmonics

Suppose we hold a tuning fork near the end of a tube that is closed at the other end, as shown in Figure 14.21, Figure 14.22, and
Figure 14.23. If the tuning fork has just the right frequency, the air column in the tube resonates loudly, but at most frequencies
it vibrates very little. This means that the air column has only certain natural frequencies. The figures show how a resonance at
the lowest of these natural frequencies is formed. A disturbance travels down the tube at the speed of sound and bounces off the
closed end. If the tube is just the right length, the reflected sound arrives back at the tuning fork exactly half a cycle later, and it
interferes constructively with the continuing sound produced by the tuning fork. The incoming and reflected sounds form a

standing wave in the tube as shown.

Figure 14.21 Resonance of air in a tube closed at one end, caused by a tuning fork. A disturbance moves down the tube.

Figure 14.22 Resonance of air in a tube closed at one end, caused by a tuning fork. The disturbance reflects from the closed end of the

tube.

Figure 14.23 Resonance of air in a tube closed at one end, caused by a tuning fork. If the length of the tube L is just right, the disturbance
gets back to the tuning fork half a cycle later and interferes constructively with the continuing sound from the tuning fork. This interference

forms a standing wave, and the air column resonates.

The standing wave formed in the tube has its maximum air displacement (an antinode) at the open end, and no displacement (a



node) at the closed end. Recall from the last chapter on waves that motion is unconstrained at the antinode, and halted at the
node. The distance from a node to an antinode is one-fourth of a wavelength, and this equals the length of the tube; therefore,
A = 4L . This same resonance can be produced by a vibration introduced at or near the closed end of the tube, as shown in

Figure 14.24.

Figure 14.24 The same standing wave is created in the tube by a vibration introduced near its closed end.

Since maximum air displacements are possible at the open end and none at the closed end, there are other, shorter wavelengths
that can resonate in the tube see Figure 14.25). Here the standing wave has three-fourths of its wavelength in the tube, or
L= (3/4)A,sothat A’ = 4L/3 . There is a whole series of shorter-wavelength and higher-frequency sounds that resonate

in the tube.

We use specific terms for the resonances in any system. The lowest resonant frequency is called the fundamental, while all
higher resonant frequencies are called overtones. All resonant frequencies are multiples of the fundamental, and are called
harmonics. The fundamental is the first harmonic, the first overtone is the second harmonic, and so on. Figure 14.26 shows the
fundamental and the first three overtones (the first four harmonics) in a tube closed at one end.

Figure 14.25 Another resonance for a tube closed at one end. This has maximum air displacements at the open end, and none at the closed
end. The wavelength is shorter, with three-fourths 1’ equaling the length of the tube, so that A’ = 4L/3 . This higher-frequency vibration is

the first overtone.

Figure 14.26 The fundamental and three lowest overtones for a tube closed at one end. All have maximum air displacements at the open

end and none at the closed end.

The fundamental and overtones can be present at the same time in a variety of combinations. For example, the note middle C on
a trumpet sounds very different from middle C on a clarinet, even though both instruments are basically modified versions of a



tube closed at one end. The fundamental frequency is the same (and usually the most intense), but the overtones and their mix
of intensities are different. This mix is what gives musical instruments (and human voices) their distinctive characteristics,
whether they have air columns, strings, or drumheads. In fact, much of our speech is determined by shaping the cavity formed
by the throat and mouth and positioning the tongue to adjust the fundamental and combination of overtones.

Open-Pipe and Closed-Pipe Resonators

v
The resonant frequencies of a tube closed at one end (known as a closed-pipe resonator) are f, = n—, n=1,3,5..,,

4L

where f; is the fundamental, £ is the first overtone, and so on. Note that the resonant frequencies depend on the speed of sound
vand on the length of the tube L.

Another type of tube is one that is open at both ends (known as an open-pipe resonator). Examples are some organ pipes, flutes,
and oboes. The air columns in tubes open at both ends have maximum air displacements at both ends. (See Figure 14.27).
Standing waves form as shown.

Figure 14.27 The resonant frequencies of a tube open at both ends are shown, including the fundamental and the first three overtones. In
all cases the maximum air displacements occur at both ends of the tube, giving it different natural frequencies than a tube closed at one

end.

The resonant frequencies of an open-pipe resonator are

v
fn = nz, n= 1,2, 3,
where f; is the fundamental, £, is the first overtone, £ is the second overtone, and so on. Note that a tube open at both ends has a
fundamental frequency twice what it would have if closed at one end. It also has a different spectrum of overtones than a tube
closed at one end. So if you had two tubes with the same fundamental frequency but one was open at both ends and the other
was closed at one end, they would sound different when played because they have different overtones.

Middle C, for example, would sound richer played on an open tube since it has more overtones. An open-pipe resonator has
more overtones than a closed-pipe resonator because it has even multiples of the fundamental as well as odd, whereas a closed
tube has only odd multiples.

In this section we have covered resonance and standing waves for wind instruments, but vibrating strings on stringed
instruments also resonate and have fundamentals and overtones similar to those for wind instruments.

Solving Problems Involving Harmonic Series and Beat Frequency

@ WORKED EXAMPLE

Finding the Length of a Tube for a Closed-Pipe Resonator
If sound travels through the air at a speed of 344 m/s, what should be the length of a tube closed at one end to have a
fundamental frequency of 128 Hz?




Strategy
The length L can be found by rearranging the equationf, = n

v
aL -
Solution

(1) Identify knowns.

- The fundamental frequency is 128 Hz.
« The speed of sound is 344 m/s.

() Usef, = n% to find the fundamental frequency (n=1).

fi= 1L 14.14
(3) Solve this equation for length.
%
= E 14.15

(4) Enter the values of the speed of sound and frequency into the expression for L.

v 344 m/s

= =—— =0.672 .
i, ~ a0 Hy C o2 m 14.16

Discussion

Many wind instruments are modified tubes that have finger holes, valves, and other devices for changing the length of the
resonating air column and therefore, the frequency of the note played. Horns producing very low frequencies, such as tubas,
require tubes so long that they are coiled into loops.

@ WORKED EXAMPLE

Finding the Third Overtone in an Open-Pipe Resonator

If a tube that’s open at both ends has a fundamental frequency of 120 Hz, what is the frequency of its third overtone?
Strategy

Since we already know the value of the fundamental frequency (n = 1), we can solve for the third overtone (n = 4) using the

v

equationf, = ny;

Solution
Since fundamental frequency (n=1) is

fi==—. 14.17

and

fi = 4%,]”4 — 4f; = 4(120 Hz)=480 Hz. 14.18

Discussion

To solve this problem, it wasn't necessary to know the length of the tube or the speed of the air because of the relationship
between the fundamental and the third overtone. This example was of an open-pipe resonator; note that for a closed-pipe
resonator, the third overtone has a value of n =7 (not n=4).

@ WORKED EXAMPLE

Using Beat Frequency to Tune a Piano
Piano tuners use beats routinely in their work. When comparing a note with a tuning fork, they listen for beats and adjust the
string until the beats go away (to zero frequency). If a piano tuner hears two beats per second, and the tuning fork has a



frequency of 256 Hz, what are the possible frequencies of the piano?

Strategy
Since we already know that the beat frequency f3is 2, and one of the frequencies (let’s say £) is 256 Hz, we can use the equation
f8 = |fi —f2|to solve for the frequency of the piano £.

Solution

Sincefp = |fi = fal,
we know thateitherfg = f; —fror—fg =f1 — f> .

Solving for £,
fi =fs +fo0tfi = ~fs + 1. s |
Substituting in values,
fi = 24256 Hzorfi=—2 +256 Hz @
So,
f1 =258 Hz or 254 Hz. 14.21
Discussion

The piano tuner might not initially be able to tell simply by listening whether the frequency of the piano is too high or too low
and must tune it by trial and error, making an adjustment and then testing it again. If there are even more beats after the
adjustment, then the tuner knows that he went in the wrong direction.

Practice Problems

21. Two sound waves have frequencies 250 Hz and 280 Hz. What is the beat frequency produced by their superposition?

a. 290Hz

b. 265Hz

c. 60Hz

d. 30Hz

22. What is the length of a pipe closed at one end with fundamental frequency 350 Hz? (Assume the speed of sound in air is

331 m/s.)

a. 26cm

b. 26m

c. 24m

d. 24cm

Check Your Understanding

23. Whatis damping?
a. Over time the energy increases and the amplitude gradually reduces to zero. This is called damping.
b. Over time the energy dissipates and the amplitude gradually increases. This is called damping.
c. Over time the energy increases and the amplitude gradually increases. This is called damping.
d. Over time the energy dissipates and the amplitude gradually reduces to zero. This is called damping.

24. What is resonance? When can you say that the system is resonating?

a. The phenomenon of driving a system with a frequency equal to its natural frequency is called resonance, and a system
being driven at its natural frequency is said to resonate.

b. The phenomenon of driving a system with a frequency higher than its natural frequency is called resonance, and a
system being driven at its natural frequency does not resonate.

c. 'The phenomenon of driving a system with a frequency equal to its natural frequency is called resonance, and a system
being driven at its natural frequency does not resonate.

d. The phenomenon of driving a system with a frequency higher than its natural frequency is called resonance, and a
system being driven at its natural frequency is said to resonate.



25.

26.

27.

28.

In the tuning fork and tube experiment, in case a standing wave is formed, at what point on the tube is the maximum
disturbance from the tuning fork observed? Recall that the tube has one open end and one closed end.

a.

b.
c.
d.

At the midpoint of the tube
Both ends of the tube

At the closed end of the tube
At the open end of the tube

In the tuning fork and tube experiment, when will the air column produce the loudest sound?

a.
b.
c.

d.

If the tuning fork vibrates at a frequency twice that of the natural frequency of the air column.
If the tuning fork vibrates at a frequency lower than the natural frequency of the air column.
If the tuning fork vibrates at a frequency higher than the natural frequency of the air column.
If the tuning fork vibrates at a frequency equal to the natural frequency of the air column.

What is a closed-pipe resonator?

a.
b.
c.

d.

A pipe or cylindrical air column closed at both ends
A pipe with an antinode at the closed end

A pipe with a node at the open end

A pipe or cylindrical air column closed at one end

Give two examples of open-pipe resonators.

a.

b.
c.
d

piano, violin

drum, tabla

rlectric guitar, acoustic guitar
flute, oboe



